

Clean Coal for Europe Making CCS Work

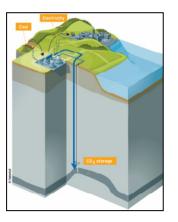
Dr. Hartmuth Zeiß
Chairman of the Managing Directors
Vattenfall Europe Mining & Generation

Vattenfall: A European Energy Company

 Europe's fifth largest generator of electricity and the largest producer of municipal heat

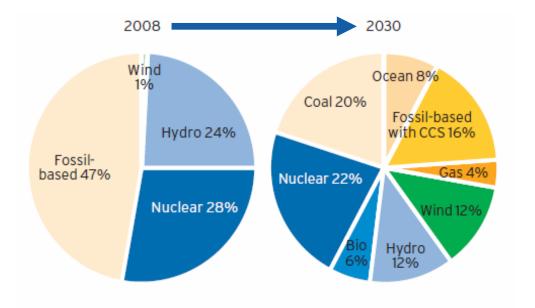
Net sales 2009: 19.85 billion €

Operations in Sweden, Finland, Denmark, Germany,
 Poland, the Netherlands, Belgium and UK


- 7.4 million electricity customers
- 5.6 million network customers
- Business along the entire value chain
- 40.000 employees
- 100% owned by the Swedish state

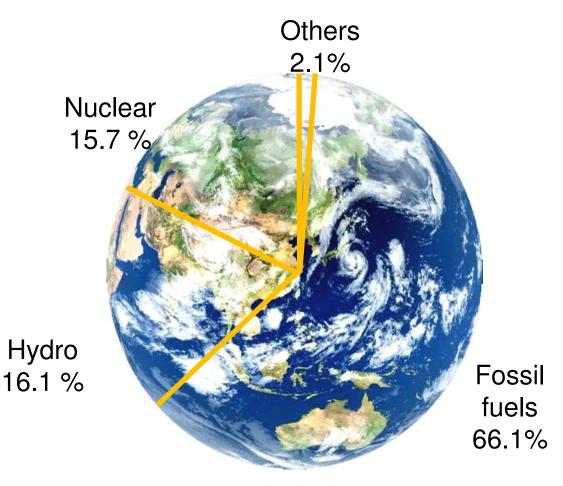
Various Technologies – One Strategy

Wind Energy


CCS

Biomass

Nuclear



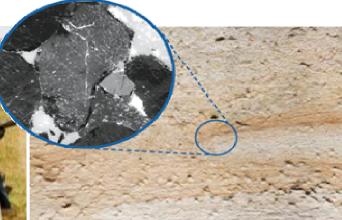
CCS – A Global Perspective

- The world will not stop using fossil fuels.
- Coal is the one fossil fuel which combines the greatest potential with the strategic optimum
- CCS is **THE** key technology for developing a CO₂ lean energy system based on the reality of fossil fuels – especially coal

global electricity supply - 2008

Developing CCS

Capture CO₂ Sequestration


Transport CO₂ Pipeline

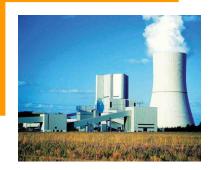
StorageGeological Storage

Target: Parallel development of technology for carbon dioxide capture and storage.

Roadmap for implementing carbon capture

Commercial-scale PP: 500 - 1000 MW_{ol}

Test rigs: $0.1 - 0.5 \, \text{MW}_{\text{th}}$



Pilot plant: 30 MW_{th}

Demonstration plant: 300 MW

Feasibility studies

2001

Theoretical studies

2004

- Research
- Fundamental principles
- Combustion characteristics

2008

- Demonstration of the entire process chain
- Interplay of components
- Validation of results gathered with the test rigs
- Investigation of scale-up criteria

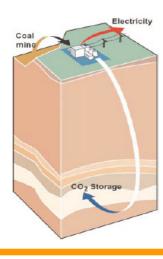
2015

- Verification and optimisation of the selected components
- Risk mitigation
- Proof of commercial operability (subsidising still required for this step)

2020

- Economic ally viable and competitive power plant concept
- No subsidies needed

Roadmap for implementing carbon storage


Pilot phase EGR / CO. injection of 100.000 t

Demo phase for storage CO₂ injection of >1 m t

Commercially viable concept

Screening

Feasibility studies

2001

- Theoretical studies
- Ongoing R&D injection projects (Sleipner, In Salah)

2004

- Screening
- Research
- Fundamental principles
- Pipeline model computations

2010 / 2011

- Altmark project
- Demo: EGR
- Demonstration of the full process chain
- Operating experience with injection
- Research

2015

- East Brandenburg aquifer project
- 1st step: repository exploration
- Qualification of reservoir structures
- Opening-up of the reservoir
- Pipeline construction
- Operation over 15 20 yrs

2020

Economically viable and competitive transport and storage infrastructure

The CCS pilot plant: Successful testing of CO₂ capture

Facts and figures:

Capacity: 30 MW_{thermal}

CO₂ capture rate: > 90%

Results of operation:

Operating hrs since Sept. 2008: 6,000 hrs

CO₂ quantity captured: 3,100 t

- > The CCS pilot plant serves the purpose of testing CO₂ capture according to the Oxyfuel process.
- > The obtained results of operation meet the expectations regarding CO₂ capture.
- > Further potential for technical optimisation is available, and is being tested continuously.

CCS-Demonstration Project Jänschwalde

Capture

Transport

Storage

Block G (Oxyfuel)

Capacity gross: 250 MW Capacity net: 167 MW Production: 1.3 TWh Efficiency net: 36% Coal consumption: 1.5 mill. t Emission total: 1.4 mill. t Emission captured: 1.3 mill. t Capture rate: 93%

Block F (PCC)

Capacity gross:	534 MW
thereof PCC	50 MW
Capacity net:	494 MW
Production:	3.5 TWh
Efficiency net:	36%
Coal consumption:	4.1 mill. t
Emission total:	3.9 mill. t
Emission captured:	0.4 mill. t
Capture rate:	10%
Capture rate (treated flue gas):	90%

Birkholz

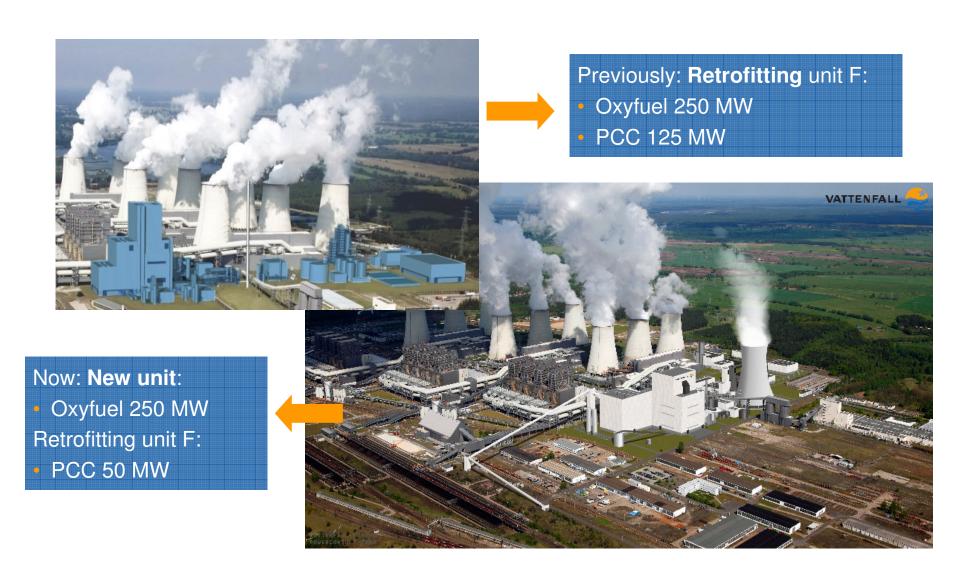
Distance: 60 km Storage capacity: up to 100 mill. t Storage type: Saline formation

Neutrebbin

Distance: 130 km Storage capacity: up to 100 mill. t Storage type: Saline formation

Altmark (owned by GDF)

Distance: 300 km Storage capacity: ~450 mill. t Storage type: Gas reservoir


Two capture technologies as part of demo plant

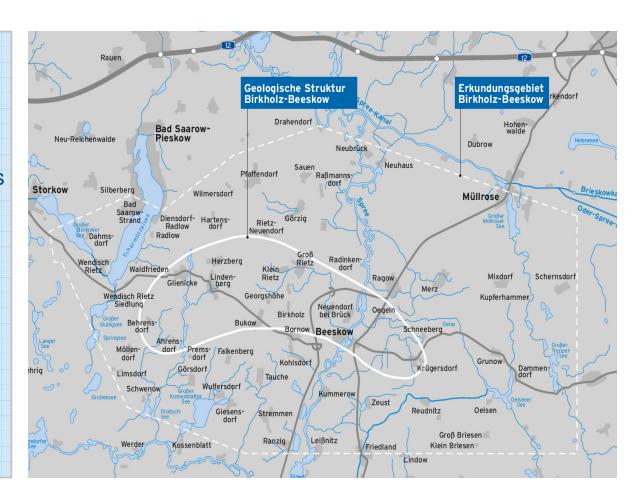
Three alternative storage locations being explored in parallel

The CCS power plant: Advancing the concept

Advancing the concept - Key results of the technical modifications

	Previous concept	Current concept
Efficiency (Oxyfuel)	28 %	36 %
CO ₂ emissions per kWh		
- Oxyfuel	145 g/kWh	78 g/kWh
- PCC (rel. to treated flue gas)	149 g/kWh	107 g/kWh
Captured CO ₂	2.7 Mt/a	1.7 Mt/a

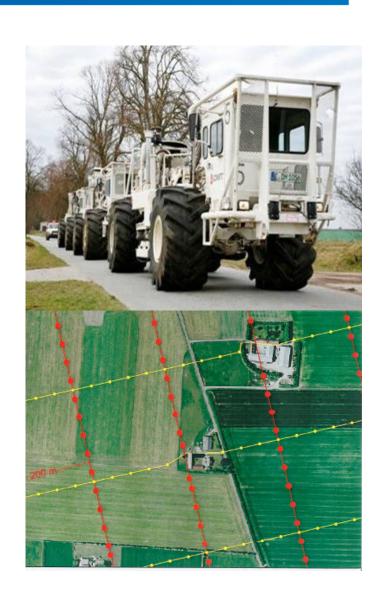
Use of best practice in power plant technology


- highest possible power plant efficiency for a CCS demo plant
- lowest possible CO2 emissions per kWh: Oxyfuel less than 25% of BAT gas-fired power plant)

Status of storage reservoir exploration

Status Birkholz-Beeskow:

- Permits for exploration of the Birkholz-Beeskow and Neutrebbin storage structures have been received.
- Main plan for operations, and special plan for seismic operations, submitted for Birkholz-Beeskow to authority LBGR.
- Main plan for operations currently in the phase of public participation.



Next step: exploring the geological formation

Vattenfall needs to explore the potential storage sites

- to be able to evaluate the suitability of the geological formations;
- to be able to answer open questions on a valid basis;
- as an essential step towards a permit procedure for later CO₂ storage.

Transposition of the EU Directive into German law

- CCS Directive is an element of the EU's "Green package"
- Publication of the "Green package" in the EU Gazette on 05 June 2009
- Enforcement of the Directive after 20 days, i.e. on 25 June 2009
- Deadline for transposition
 of the Directive into national law:
 after two years

- The EU CCS Directive must have been transposed into national law by 25 June 2011
- CCS bill presented on 14 July 2010 (joint press conference of the Federal Ministries for the Environment and Economics)
- To be followed by a reconciliation process in the parliament (final decision in Q1 2011)
- Law can be enforced in summer 2011 at the earliest

Preconditions for implementing the project

Implementation of the CCS demo project in the German state of Brandenburg

Subsidies

Legal Framework

Public Acceptance

Public Acceptance: Dialogue and Transparency

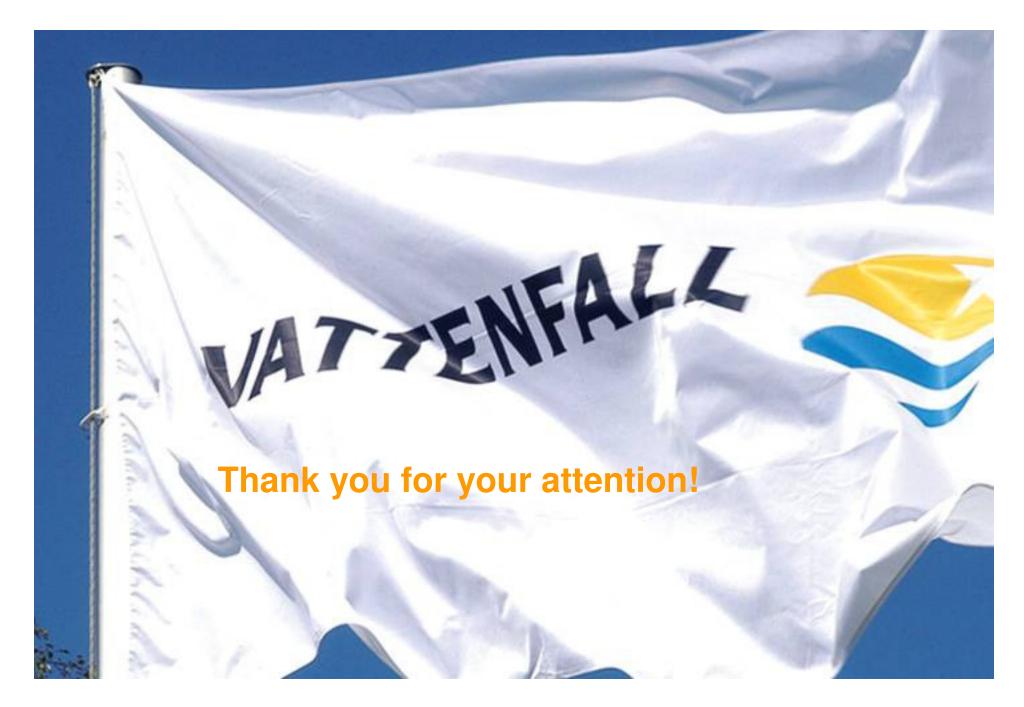
DIALOGUE

- Community information office opened 07 / 2009
- Regular information events on CCS
- Regional contacts programme (regular talks with regional political and media stakeholders)
- Regular talks with regional associations ("regulars' table")
- Regional Advisory Board (initiator State of Brandenburg; sort of "social dialogue")

TRANSPARENCY

- Extensive distribution of info materials
- Telephone hotline for community questions
- Regular newsletter on project progress
- Placement of information ads

We take people's fears in connection with CO2 storage seriously.


We fully rely on open and direct communication with the public.

Conclusion:

- CCS is one of the technologies with crucial importance for climate protection from a sustainability angle.
- Germany specifically Brandenburg and Vattenfall are among the technology leaders, but losing momentum.
- The development of CCS will sustain important industries, and the resulting value creation and employment situation.
- Major prerequisites to its successful rollout are an investment-friendly legal framework and political support.

